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Living cells maintain a steady state of biochemical reaction rates
by exchanging energy and matter with the environment. These
exchanges usually do not occur in in vitro systems, which
consequently go to chemical equilibrium. This in turn has severely
constrained the complexity of biological networks that can be
implemented in vitro. We developed nanoliter-scale microfluidic
reactors that exchange reagents at dilution rates matching those
of dividing bacteria. In these reactors we achieved transcription
and translation at steady state for 30 h and implemented diverse
regulatory mechanisms on the transcriptional, translational, and
posttranslational levels, including RNA polymerases, transcrip-
tional repression, translational activation, and proteolysis. We
constructed and implemented an in vitro genetic oscillator and
mapped its phase diagram showing that steady-state conditions
were necessary to produce oscillations. This reactor-based ap-
proach will allow testing of whether fundamental limits exist to in
vitro network complexity.
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Instead of complex and ill-characterized cellular hosts, in vitro
systems have recently become popular alternatives for imple-

menting synthetic networks. In vitro systems can be completely
defined, easily manipulated, interrogated, and have been used to
study a number of biological phenomena. For example, periodic
temporal patterns were observed in systems based on nucleic
acid synthesis and degradation (1, 2), and ordered spatial pat-
terns were created from purified cell division regulators (3). In
vitro transcription and translation (ITT)-based systems should,
in principle, be able to use all regulatory functionalities found in
living cells. Reconstituted, defined ITT systems like the PURE
mix (4), are particularly appealing for bottom-up synthetic bi-
ology. A number of recent examples show that various genetic
(5–10) and metabolic (11) networks can be implemented in ITT
systems. Genetic network complexity has, however, been limited
to genetic cascades, where the output of one stage acts on the
next stage, whereas examples of positive and negative feedback
have been basic (8, 9, 12). The main limitation to network
complexity in vitro derives from its batch reaction format. In
batch, synthesis rates decrease as precursors are consumed, en-
zymatic activities degrade, and reaction products accumulate.
This rapid approach to chemical equilibrium severely limits
network size. In addition, negative feedback is particularly dif-
ficult to implement, because regulators from earlier stages are
not removed. The implementation of active degradation mech-
anisms for RNA and proteins (13) could solve the problem of
product removal, and synthesis times can be increased by using
reactors that allow an exchange of small molecules between the
ITT mix and a feeding solution. Large-volume continuous flow
and exchange systems were developed to increase the amounts of
protein produced by ITT systems and are based on diffusion of
small molecules through ultrafiltration membranes (14, 15).
Scaled down versions of reactors using similar principles were
more recently developed to increase throughput and minimize
cost (16, 17). Cell-free genetic networks have, however, not yet

profited from the full potential of continuous reaction conditions,
although protein synthesis in a functionalized phospholipid
vesicle surrounded by a feeding solution (18) and a two-stage
genetic activation cascade in a dialysis system yielded promising
results (9).

Results
Steady-State Transcription and Translation in Microfluidic Nanoreactors.
To enable the implementation of complex genetic networks in
vitro, we developed a microfluidic device in which ITT proceeds at
steady state for extended periods of time. Our microfluidic device
contains eight independent 33-nL reactors (SI Appendix) and
functions similarly to previous devices (19–21). Dilutions occurred
in discrete steps, where each dilution step added fresh ITT mix and
template DNA, displacing part of the old reaction volume (Fig.
1A). Dilution rates could be precisely tuned by changing the vol-
ume displaced per dilution step in a range of 10–40% of reactor
volume. The time interval between dilution steps was kept constant
at 15 min (SI Appendix). These exchanges resulted in dilution rates
of 0.4–2 h−1. To enable long-term reactions, we cooled the ITT mix
off chip to 6 °C, while keeping the on-chip reaction temperature at
37 °C. Fluorescent reporters allowed us to determine DNA,
mRNA, and protein concentrations in real time (22) and a com-
puter program controlled all device and imaging operations (Fig.
1B and SI Appendix).
We used a reaction rate model to describe the process of

transcription and translation (22–24). We measured the reaction
rate parameters that characterize an ITT batch reaction and
added the dilution steps that replace fractions of the reactor
volume with new reaction mix with full synthesis activity (Fig. 1C
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and SI Appendix). During continuous reaction, synthesis rates
reach a steady state, where the rate at which activities decrease is
balanced by the inflow rate of fresh reaction mix. Consequently,
RNA and protein concentrations also reach steady-state levels
(Fig. 1D). On the basis of our model, a genetic system such as the
repressilator (25) would not oscillate in a batch reaction.
Improvements like degradation mechanisms for mRNA and
protein, as well as elongated synthesis times (9, 13, 18), could
possibly lead to a few damped oscillations in batch, whereas
sustained oscillations can only be obtained under continuous
conditions (Fig. 1E).
We performed protein synthesis reactions in vitro, generating

EGFP from a linear DNA template regulated by a T7 promoter
at dilution rates comparable to bacterial doubling times between
20 and 104 min (Fig. 2A). We achieved dilution-dependent
steady-state mRNA and protein levels for 30 h (Fig. 2B). In-
dependent of dilution rate, DNA template concentration re-
mained constant in all conditions (SI Appendix, Fig. S1). When
we momentarily stopped the flow of fresh reagents, RNA and
protein concentrations increased and returned to their previous
steady-state levels when dilution was resumed (Fig. 2C). To
demonstrate the dynamic nature of synthesis and dilution, we
switched between periods where DNA template or water was
added (Fig. 2D). This led to continuously changing DNA tem-
plate concentrations with RNA and protein concentrations os-
cillating with a slight delay. Our model accurately captured these
dynamic changes.

Implementation of Regulatory Mechanisms. We implemented a
number of regulators, acting transcriptionally, translationally,

and posttranslationally, under steady-state conditions.We transiently
expressed the regulators to allow comparison of RNA and protein
concentration of the reporter in the presence and absence of the
regulator in one experiment (Fig. 3). We implemented transcrip-
tional activation by expressing T3 RNA polymerase (T3RNAP) or
sigma factor 70 (σ70) in the presence of the Escherichia coli RNAP
core enzyme and EGFP under control of their respective pro-
moters. Expression of either protein increased RNA concentration
from undetectable levels to ∼150 and 18 nM for T3RNAP and
E. coliRNAP, respectively, and also increasedEGFPconcentration
in the expectedmanner (Fig. 3A). Transcriptional repression by the
transcriptional repressor TetR reduced transcription of promoters
expressed by three different polymerases (T3, T7, and E. coli
RNAP). Coexpression of tetR reduced RNA levels to 30%, 50%,
and 40% of their unrepressed levels for T3, T7, and E. coli RNAP,
respectively. These changes of mRNA concentration consequently
led to a decrease in EGFP levels (Fig. 3B). We implemented
translational activation using two regulator RNAs that were pre-
viously used in vivo to induce mRNA translation by transactivation
and stop codon suppression (Fig. 3C) (26, 27). In transactivation,
a transactivator RNAmodifies mRNA secondary structure of a cis-
repressed RNA, making the ribosomal binding site accessible (26).
For stop codon suppression, we used the amber suppressor tRNA
encoded by supD allowing read through of a UAG stop codon (27),
which was located immediately after the start codon of the EGFP
gene. Aminoacylation of the tRNA with serine required no addi-
tives to the ITT system as both enzyme and amino acid are present.
These mechanisms led to an increase in EGFP concentration from
undetectable levels to 14 and 35 nM, whereas RNA concentrations
remained high in the presence and absence of the regulator RNA
(expression of supD reducedRNA concentration by about 10–20%,
Fig. 3B). To quantify the effect of both activators on translation of
their respective reporter mRNAs, which were synthesized at dif-
ferent concentrations, we used the model of EGFP ITT to de-
termine the ratio of observed to expected EGFP concentration for
the measured mRNA concentration. According to this analysis,
translation efficiency was 1.4% for transactivation and 2.8% for
stop codon suppression (SI Appendix, Fig. S2). Finally, we suc-
cessfully implemented protein degradation by reconstituting the
ATP-dependent protease ClpXP (a large 700- to 800-kDa multi-
subunit complex) (28). Degradation of GFP targeted for recogni-
tion by AAA+ proteases such as ClpXP has been shown in cell
extracts, where these proteases are naturally present (13). Here, we
functionally expressed the protease in vitro and showed that it
specifically degraded EGFP fused with the ssrA degradation tag. In
the presence of ClpXP, steady-state EGFPssrA concentration de-
creased by about 80% (Fig. 3D). Again, we calculated expected
EGFP concentrations from the measured mRNA concentrations,
which decreased when ClpX and ClpP were expressed, to de-
termine if EGFP decrease was indeed caused by protein degrada-
tion. Only in the case of ssrA-tagged EGFP did we observe
a significant decrease of observed to expected EGFP when both
protease subunits were expressed (SI Appendix, Fig. S2).

An in Vitro Genetic Oscillator. Using three regulators from this
toolbox, we built a genetic oscillator based on a positive feedback
and delayed negative feedback architecture (1, 2) (Fig. 4A). In
our oscillator network, T3RNAP induces its own expression,
which constitutes the positive feedback loop. The same poly-
merase also transcribes the supD and tetR genes to produce
amber suppressor tRNA and tetR mRNA, which can only be
translated when the suppressor tRNA concentration is suffi-
ciently high. TetR then represses transcription of the T3RNAP
gene, which eventually stops its own synthesis. Citrine and ce-
rulean fluorescent proteins allowed us to simultaneously monitor
expression from the two promoters in the system. A model of this
genetic network (SI Appendix) produced oscillations using pa-
rameter estimates for the regulators involved. Modeling of this

Fig. 1. ITT under steady-state conditions. (A) Function of a microfluidic
nanoreactor for continuous ITT. At each dilution step, the supply channel is
flushed with fresh reagent. A peristaltic pump meters a specific volume into
the reaction ring. After both ITT mix and DNA have been added, another
peristaltic pump mixes the reaction. (B) Experimental setup and analysis. (C)
Model of EGFP synthesis in the reactor. Relative transcriptional (TX) and
translational (TL) activities decrease at constant rates. In the continuous re-
action (blue arrows), all modeled species are diluted at a constant rate, and
DNA as well as relative TX and TL activities are replaced at the same rate. (D)
Model predictions for a batch and a continuous reaction. Predictions were
for 18.3 nM DNA and dilutions of 32% every 15 min. (E) Model of the
repressilator (25) under three reaction conditions (SI Appendix). We show
the concentration of one of the repressor proteins (R).
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system showed that the value of the dilution rate was critical
for sustained oscillations to occur, which led us to test several
dilution rates for each combination of DNA template concen-
trations. As expected, steady-state conditions were necessary to
produce oscillations in our experiments and occurred only in
a narrow range of dilution rates (Fig. 4B). The range of dilution
rates that gave rise to oscillations increased with decreasing supD
template concentration; supD was, however, necessary, as well as
the other two components (SI Appendix, Fig. S3). For supD
template concentrations below 82 nM, where oscillations were
observed over a wider range of residence times, oscillation pe-
riod increased linearly between 4 and 16 h as a function of
residence time (SI Appendix, Fig. S4). These residence times
correspond to cellular doubling times between 20 and 58 min. A
similar dependence of period on dilution rate has been found for
bacterial growth rates (29). Apart from oscillations or damped
oscillations, two other general behaviors were observed: at high
residence times reporter concentrations peaked once and then
went to a low stable steady state, and at low residence times, or
when supD template was absent, they immediately approached
a stable steady state (Fig. 4C and SI Appendix, Fig. S5). The
model of the oscillator produced similar results as a function of
dilution rate (SI Appendix, Fig. S6) and was also able to capture
the results of control experiments, where one network compo-
nent at a time was removed from the system (SI Appendix, Figs.
S3 and S7).

Discussion
Biological in vitro oscillations were previously achieved only in
biochemically simple reactions, such as oligonucleotide-based
systems containing an active degradation mechanism (1, 2). Our
genetic oscillator shows that continuous reaction conditions al-
low complex dynamics to occur in cell-free protein synthesis
reactions and in a sustained fashion. We observed that oscil-
lations occurred in a narrow range of physiological dilution rates,

which is important information for the implementation of in vivo
oscillators, where dilution rates cannot be tuned as easily.
The examples of regulators we implemented in this study show

that there appear to be no major limitations in the control
mechanisms that can be implemented in vitro. Nonetheless,
there are still many mechanisms to be tested, including different
transcriptional repressors, transcriptional activators such as
LuxR, or protein phosphorylation. Moreover, it may be possible
to use systems that could not be implemented in vivo because of
interference with vital processes in the host. In the course of
characterizing different regulators with the goal of identifying
suitable candidates to assemble a genetic oscillator, we found
that E. coli RNA polymerase promoters recognized by σ70 often
exhibited very low transcription rates. A recent report suggests
that circular DNA might be a better template than linear DNA
to reproduce in vivo transcription rates from E. coli promoters
(30). To achieve tight repression of a strong promoter, we in-
cluded two TetR operator sites into the T3 promoter, which
explains its higher repression efficiency than the T7tet promoter.
The TetR repressed version of the E. coli promoter featured two
operator sites but the considerably lower activity in the un-
repressed state made it less suitable for our oscillator design. The
combination of transcriptional strength and tight repression are
desirable features of promoters in many synthetic networks and
often not trivial to engineer (25, 26). To achieve tighter control
of the tetR gene in our oscillator network than transcriptional
control could provide, we added stop codon suppression as
a second regulatory level.
The reactor-based approach presented here allows bottom-up

synthetic biology experiments to be performed in a completely
defined and controlled environment. It differs from earlier
designs of reactors for continuous ITT reactions (15, 17) in that
it is not based on a size-exclusion membrane for exchange of
molecules. In our microfluidic reactor-based approach, all mol-
ecules, including RNA polymerase, translation machinery, and
DNA template, are constantly exchanged. Whereas the exchange

Fig. 2. Steady-state ITT. (A) Dilution conditions for the experiments in this figure. Experimental RNA and protein concentrations (solid lines, Left axes) and
model prediction (dashed lines, Right axes) for (B) long-term ITT at different dilution rates, (C) a transient switch to batch conditions (shaded area), and
(D) oscillating DNA template concentrations (shaded area, water added; white area, DNA added). DNA template concentration, 10 nM (B and C); maximum
8.2 nM (D).
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of enzymes involved in the reaction ensures that synthesis rates
stay at a constant steady state even if they degrade over time, it
could be interesting to immobilize the DNA templates in the
reactor or to organize specific protein products in a spatial
manner (31). Although our DNA template concentrations were
in the range of low copy number plasmid concentrations in
E. coli, RNA and protein concentrations were higher than av-
erage cellular concentrations. Due to the relatively large size of
our nanoreactors (two orders of magnitude larger than the giant
bacterium Epulopiscium) (32), stochastic processes may be dif-
ficult to study at the moment (33). It should however be feasible
to scale down the 33-nL reactors by one to two orders of mag-
nitude with existing microfabrication approaches (34) and to use
E. coil RNAP instead of a phage RNAP. Down-scaling reactor
volume would also permit hundreds to possibly thousands of
reactors to be integrated on a single device (35, 36). Combined
with high-throughput DNA synthesis methods (37) this approach
would allow the rapid characterization of many synthetic net-
work variants. Due to the fact that ITT reactions only require
linear DNA templates, which were exclusively used in this study,
such an in vitro screen would require no laborious cloning steps.
It will be exciting to determine whether any fundamental limits

exist to the complexity of systems attainable in vitro. We were
able to implement a genetic oscillator in vitro similar in com-
plexity to synthetic gene networks achieved in vivo a few years
ago (25). Our nanoreactor may prove to be a viable system to
study processes that would interfere with vital processes in vivo

or processes that occur in organisms that are unculturable.
Furthermore, the system could be used to boot up and test the
biochemical subsystems of a minimal artificial cell, including
DNA replication (38), the translation machinery, or biosynthesis
of precursors (39).

Methods
Preparation of DNA Templates. PCR for linear DNA templates was performed
as previously described (22). Primer sequences are listed in SI Appendix, Table
S1. PCR templates were pKT127 for EGFP (40), pKT211 for citrine (40), pBS10
for cerulean (Yeast Resource Center), BBa_K346000 (Registry of Standard
Biological Parts) for T3 RNA polymerase, repressilator plasmid (25) for tetR,
and E. coli DH5α genomic DNA for rpoD. Short DNA templates for supD
(Registry of Standard Biological Parts; Part:BBa_K228001) and taR12 (26)
were created by PCR using overlapping oligonucleotides. Regulatory
sequences such as promoter, ribosomal binding site, terminator, and ssrA
tag were included in the oligonucleotide primers. To monitor mRNA con-
centration, the EGFP template contained a target site for binary probes in its
3′ untranslated region (22). To monitor DNA concentration, the DNA tem-
plate contained two Cy5 labels introduced by the 3′ and 5′ final primers.

Reaction Setup. We used the commercial PURExpress ITT kit (New England
Biolabs) and added water to a volume of 80% of the final reaction volume.
The remaining 20% of the reaction volume consisted of DNA template at five
times its final concentration. ITT and DNA fractions were combined on the
microfluidic chip. If necessary, the ITT mix was supplemented with binary
probes (22) at a final concentration of 1 μM E. coli RNA polymerase core
enzyme or holoenzyme (Epicenter) at 35 and 25 ng/μL, respectively, or
100 nM T3 RNAP polymerase (Fermentas). For a steady-state ITT reaction, ITT

Fig. 3. Regulation at the transcriptional, translational, and posttranslational levels. Solid lines, experimental data; dashed lines, controls. DNA template of
the regulator was transiently present (gray shaded area). Reporter (EGFP) DNA template was present at constant concentration. For a detailed summary of
concentrations and controls, see SI Appendix, Table S2. (A) Transcriptional activation by T3RNAP and σ70. E. coli RNAP core enzyme was present in the reaction
mix. Controls: wrong activator. (B) Transcriptional repression by TetR. Promoters transcribed by three different RNA polymerases were tested in the presence
of their respective polymerase. Controls: promoter without repressor binding site. (C) Activation of translation by RNA molecules. Controls: wrong activator.
(D) Protein degradation by ClpXP protease. Controls: no degradation tag (ssrA), gray lines; only one protease subunit expressed, broken lines.
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mix and DNA were combined in the reactors on the microfluidic chip in a 5:1
ratio. Every 15 min, the reactor was imaged and a fraction of the reactor
volume was replaced with fresh ITT mix and DNA at 5:1 ratio. Details on
operation and characterization of the microfluidic chip can be found in the
SI Appendix. Final concentrations of DNA templates in the genetic oscillator
were 5 nM T3tet-T3RNAP, 10 nM T3-amber-tetR, and variable T3-supD
concentration (between 0 and 100 nM). The reporter template DNAs for T3-
citrine and T3-cerulean were at 2.5 nM each. Concentrations of DNA tem-
plates for the experiment with transcriptional and posttranscriptional reg-
ulators are summarized in SI Appendix, Table S2.

Data Acquisition and Analysis. We used an inverted microscope with an au-
tomated stage to image the eight reactors on the chip. Fluorescence was
determined by imaging the reactor channel using a 20× magnification and
fluorescence filters for GFP, Cy3-Cy5 FRET, Cy5, YFP, and CFP. Background
fluorescence of a position next to the channel was subtracted from channel

fluorescence. Concentrations of mRNA and EGFP were calculated from cal-
ibrations of FRET and EGFP fluorescence using purified molecules (22). To
determine mRNA concentrations, we performed a blank reaction without
DNA template in one of the reactors and subtracted FRET background
fluorescence. Additionally, we normalized to average blank FRET fluores-
cence. To determine the period of sustained and damped oscillations of the
genetic oscillator, we measured the time between the first and the second
fluorescence maximum for both CFP and YFP fluorescence and used the
average. Data were analyzed using IgorPro and MATLAB software.

Fabrication and Design of the Microfluidic Chip. Microfluidic devices were
fabricated by standard multilayer soft lithography (41). Details on the design
and operation of the chip are provided in SI Appendix.
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